CUDA Overview
CUDA is a feature set for programming nVidia GPUs. We have 7 CUDA-enabled nodes. dwarf22, dwarf23, dwarf24, dwarf25, and dwarf35 each have two nVidia 1080 Ti graphics cards. dwarf38 and dwarf39 each have a single nVidia 980 Ti graphic card. The former set of nodes is only available to 'killable" jobs for those outside the research group that purchased them. The latter are available for anybody, however, you should send an email to beocat@cs.ksu.edu with a request to be added to the GPU priority group.
Note that both of these graphic cards are consumer-grade rather than the typical GPUs used in most high-performance computing centers. For single-precision computations, these cards are comparable to the high-end cards (at a fraction of the price), however double-precision computations are much slower.
Training videos
CUDA Programming Model Overview: http://www.youtube.com/watch?v=aveYOlBSe-Y <HTML5video type="youtube" width="800" height="480" autoplay="false">aveYOlBSe-Y</HTML5video>
CUDA Programming Basics Part I (Host functions): http://www.youtube.com/watch?v=79VARRFwQgY <HTML5video type="youtube" width="800" height="480" autoplay="false">79VARRFwQgY</HTML5video>
CUDA Programming Basics Part II (Device functions): http://www.youtube.com/watch?v=G5-iI1ogDW4 <HTML5video type="youtube" width="800" height="480" autoplay="false">G5-iI1ogDW4</HTML5video>
Compiling CUDA Applications
nvcc is the compiler for CUDA applications. When compiling your applications manually you will need to keep 3 things in mind:
- The CUDA development headers are located here: /opt/cuda/sdk/common/inc
- The CUDA architecture is: sm_30
- The CUDA SDK is currently not available on the headnode. (compile on the nodes with CUDA, either in your jobscript or via qrsh -l cuda=TRUE)
- Do not run your cuda applications on the headnode. I cannot guarantee it will run, and it will give you terrible results if it does run.
Putting it all together you can compile CUDA applications as follows:
nvcc -I /opt/cuda/sdk/common/inc -arch sm_30 <source>.cu -o <output>
Example
Create your Application
Copy the following Application into Beocat as vecadd.cu
// Kernel definition, see also section 4.2.3 of Nvidia Cuda Programming Guide
__global__ void vecAdd(float* A, float* B, float* C)
{
// threadIdx.x is a built-in variable provided by CUDA at runtime
int i = threadIdx.x;
A[i]=0;
B[i]=i;
C[i] = A[i] + B[i];
}
#include <stdio.h>
#define SIZE 10
int main()
{
int N=SIZE;
float A[SIZE], B[SIZE], C[SIZE];
float *devPtrA;
float *devPtrB;
float *devPtrC;
int memsize= SIZE * sizeof(float);
cudaMalloc((void**)&devPtrA, memsize);
cudaMalloc((void**)&devPtrB, memsize);
cudaMalloc((void**)&devPtrC, memsize);
cudaMemcpy(devPtrA, A, memsize, cudaMemcpyHostToDevice);
cudaMemcpy(devPtrB, B, memsize, cudaMemcpyHostToDevice);
// __global__ functions are called: Func<<< Dg, Db, Ns >>>(parameter);
vecAdd<<<1, N>>>(devPtrA, devPtrB, devPtrC);
cudaMemcpy(C, devPtrC, memsize, cudaMemcpyDeviceToHost);
for (int i=0; i<SIZE; i++)
printf("C[%d]=%f\n",i,C[i]);
cudaFree(devPtrA);
cudaFree(devPtrA);
cudaFree(devPtrA);
}
Gain Access to a CUDA-capable Node
qrsh -l cuda=TRUE
Compile Your Application
nvcc -I /opt/cuda/sdk/common/inc -arch sm_30 vecadd.cu -o vecadd
This will create a program with the name 'vecadd' (specified by the '-o' flag).
Run Your Application
Run the program as you usually would, namely
./vecadd
Assuming you don't want to run the program interactively because this is a large job, you can submit a job via qsub, just be sure to add the '-l cuda=true' directive.