
Linux/Bash Quick Reference
HPC Shell software carpentry lesson chapters 3-6

http://www.hpc-carpentry.org/hpc-shell/

Discovering Your Environment
pwd 	 	 	 print working directory

hostname 	 	 	 get the name of the current host computer

Listing Files and Directories
ls 	 	 	 	 list short - list files and directories

ls -l -a -h	 	 	 flags for longer list, hidden files, and human readable

ls —help or man ls	 	 to get more help on any command

alias ll=‘ls -l’	 	 	 assign ls -l to ll. Must be quoted. Linux is very customizable.

commands are programs, case sensitive, you can combine flags like ls -lah

Creating and Removing Directories
mkdir test_dir	 	 make directory - spaces separate arguments, use underscores

mkdir -p test_dir	 	 -p protects against errors if directory already exists

rmdir test_dir		 	 remove a directory, must be empty

Navigating Through the Directory Tree
cd test_dir	 	 	 change directory

cd ~/test_dir		 	 absolute path from home directory

cd /homes/daveturner	 absolute path starting at root /

cd ../dir	 	 	 relative path with .. meaning go back one directory

cd	 	 	 	 go back to your home directory, same as cd ~

Creating and Manipulating Files
touch file.txt	 	 	 create an empty file. Suffixes can be meaningful.

mv file.txt test_dir	 	 move a file to a different location

mv file.txt file2.txt	 	 rename the file instead

cp file2.txt file.txt	 	 copy the file and its contents

cp -rp dir dir2	 	 copy the entire directory and maintain modification dates

rm file2.txt	 	 	 remove a file

rm -fr dir2	 	 	 recursively remove a directory and contents

Editting Files
nano file.txt	 	 	 edit a file using nano - control characters at the bottom

vi file.txt	 	 	 edit a file using vi or vim - :wq to save and quit

	 	 	 	 https://www.tutorialspoint.com/unix/unix-vi-editor.htm

MobaXTerm	 	 	 edit files on Windows system and sync with Linux system

http://www.hpc-carpentry.org/hpc-shell/

Downloading and Uncompressing Files
wget http://www.hpc-carpentry.org/hpc-shell/files/bash-lesson.tar.gz

curl -O http://www.hpc-carpentry.org/hpc-shell/files/bash-lesson.tar.gz

tar -xvzf bash-lesson.tar.gz	 	 decompress and expand the archive

gzip/gunzip	 	 	 	 compress/expand data with .gz suffix

compress/uncompress	 	 compress/expand data with .Z suffix

zip/unzip	 	 	 	 compress/expand data with .zip suffix

scp file.txt username@hpc.edu	 use scp to transfer files from local system to Linux system

Displaying File Contents
cat/more/less file.txt	 display the contents of a file to the terminal

head/tail -1 file.txt	 	 display the first/last line of the file

wc -l file.txt	 	 	 count the number of lines (-l), words (-w) or characters (-c)

Wildcards
	 (test wildcards with ls -l first to make sure you are choosing the desired files)

wildcard *	 	 	 matches any number of type of characters (anything)

wildcard ?	 	 	 matches any single character

wildcard [a-e,w,z]	 	 matches any single character to a list or range

ls -l *_1.fastq		 	 will list all files ending with _1.fastq
wc -l S*[89]_?.fastq		 count lines in files with 8 or 9 before the underscore

grep Act5 dmel-all*	 	 display only lines with Act5 in them

Redirecting Output
echo “Hello there”	 	 	 echo a string to the terminal

echo “Hello there” > file.txt	 > will redirect the stdout output to a file

host=`hostname`	 	 	 run hostname and store in variable $host

echo “from $host” >> file.txt	 >> to append, 2> for stderr, &> for both

grep Act5 dmel-all* | wc -l	 	 pipes link output of one command to input of the next

https://www.gnu.org/software/bash/manual/html_node/Bash-Features.html
https://www.geeksforgeeks.org/bash-scripting-for-loop/

Writing Bash Scripts
#!/bin/bash	 	 	 in the first line it defines what shell the script will run in

	 	 	 	 follow by any other linux commands applications to run

chmod u+x script.sh	 add user execute permission to the bash script if needed

ls -l	 	 	 	 shows read, write, execute permissions for user, group, others

./script.sh	 	 	 run a script from the current directory

file=genome.fastq	 	 set the variable file to the genome.fastq name

wc -l $file	 	 	 use the variable $file

echo “$file”	 	 	 double quoted variables are evaluated, not within single quotes

Bash Loops
files=$(ls *.fastq)	 	 get a list of .fastq files

for file in $files	 	 set variable file successively to 3 different names

do
	 wc -l $file	 	 word count each file

done

Bash Conditionals
if [[$num -eq 1]]	 	 numbers 	 -eq -ne -lt -le -gt -ge

then	 	 	 	 string comparisons -z (empty) -n (not empty)

	 echo “it was 1”	 	 	 	 == (equal) != (not equal)

elif [[$num -ne 0]]	 	 files 	 	 -e (exists) -d (directory)

then

	 echo $num

else

	 echo “It was 0”

fi

Example bash script

#!/bin/bash -l

shebang line identifying the shell type 'bash'

Other lines starting with '#' are comments

Examples of setting variables (they don't need to be all caps)

HOST=$(hostname) # execute the 'hostname' command and put results in HOST

NCORES=$(getconf _NPROCESSORS_ONLN)

Try using the variable.

Use double quotes here as variables are not interpretted inside single quotes

echo "The host name is $HOST and has $NCORES cores"

Create a simple loop to echo the files in the current directory

for FILE in $(ls)

do

 echo "File $FILE is in this directory"

done

Use a C-like loop to set the index I from 1 to 5

for ((i=1; i<=5; i++))

do

 echo "Index I is $i"

done

Check for a specific file and echo an error if it isn't there

if [-f /homes/daveturner/myfile.txt]

then

 echo "File myfile.txt exists in /homes/daveturner"

else

 echo "myfile.txt was not found in /homes/daveturner"

fi

