
K-State Beocat Compute Cluster
Software and Hardware overview

 Rocky Linux with the Slurm batch scheduler
 Over 10,000 Intel/AMD cores on 310 compute nodes
 53 TeraBytes of RAM memory
 Low-latency 30-100 Gbps InfiniBand/RoCE network
 1/10/40 Gbps Ethernet to a 1 PetaByte file server
 290 TB fast scratch space /fastscratch
 170 32-bit NVIDIA GPUs and 4 64-bit NVIDIA P100s

2 Head Nodes

ICR-Clymene

ICR-Helios

310 Compute Nodes accessed through Slurm
4 Interactive nodes accessed only through OnDemand

62 Dwarves

32-core Broadwell
128-512 GB

56 Gbps InfiniBand
40 Gbps Ethernet

26 GPUs

54 Heroes

24-core Broadwell
128-512 GB

40 Gbps RoCE
40 Gbps Ethernet

120 Moles

20-core Broadwell
32 GB

32 Gbps QDR
1 Gbps Ethernet

Slurm

39 Wizards

32-64 core Skylake
96 GB - 1.5 TB

100 Gbps OmniPath
10 Gbps Ethernet

103 32-bit GPUs
4 64-bit GPUs

31 Warlocks

32-128 core Epyc
128 GB - 1.5 TB
40 Gbps RoCE

40 Gbps Ethernet

16 GPUs

BeoShock Compute Cluster
Software and Hardware overview

 Rocky Linux with the Slurm batch scheduler
 768 Intel cores on 21 compute nodes
 Over 7.2 TeraBytes of RAM memory
 Low-latency 10 Gbps Ethernet network
 150 TeraByte file server
 8 High-End NVIDIA GPUs for accelerating scientific apps

2 Head Nodes

Headnode01

Headnode02

21 Compute Nodes accessed through Slurm. Also
Available interactively through OnDemand graphical interface.

2 High-Memory
nodes

36 cores
1500 GB

10 Gbps Ethernet

2 GPU nodes

2 NVIDIA V100s
16.4 GB GPU mem

36 cores
375 GB RAM

10 Gbps Ethernet

Slurm

16 Compute
nodes

36 cores
186 GB RAM

10 Gbps Ethernet

1 Physics
node

4 NVIDIA A30 GPUs
24.6 GB GPU mem

48 cores
515 GB RAM

10 Gbps Ethernet

Scalar Computers
P0

Memory

Processor

Program
data

One processor per computer
Operations performed one at a time
Example: Vector addition

Load X0
Load Y0
Add X0 + Y0
Store into Z0
Repeat for each element i

Simple and easy to program

Z0
Z1
Z2
Z3
Z4
Z5
Z6
Z7
…

= +

X0
X1
X2
X3
X4
X5
X6
X7
…

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7
…

Zi = Xi + Yi

Scalar Computers
P0

Memory

Processor

Program
data

Copy example code to your directory
beocat> cp -rp /homes/daveturner/beocat_workshop ~
beocat> cd beocat_workshop

Compiling vec_add.c
beocat> module load iomkl
beocat> icc vec_add.c -o vec_add_icc

Running vec_add.c
beocat> ./vec_add_icc
beocat> sbatch sb.vector

Compile with gcc
beocat> module load foss
beocat> gcc vec_add.c -o vec_add_gcc
beocat> ./vec_add_gcc

Vector Computers

VP0

Memory

Vector
Processor

Program
data

Vector computations instead of scalars
Old Cray systems had vectors
of 64 doubles

The vector compiler provides great help
Example: Vector addition

Load X0 through X63
Load Y0 through Y63
Vector unit adds each element
X0+Y0, X1+Y1, …, X63+Y63

Store the vector into Z0 through Z63
Repeat for the next 64 elements
Potentially 64 times faster

Z0
.
.

Z63
Z64
.
.

Z127
…

= +

X0
.
.

X63
X64

.

.
X127
…

Y0
.
.

Y63
Y64

.

.
Y127
…

Performance on Vector Computers

An application with 3 loops taking 30 seconds, 20 seconds, and 50 seconds

If loops 1 and 2 are vectorized but not loop 3
 30/64 seconds + 20/64 seconds + 50 seconds => 50.78 seconds

If all 3 loops are vectorized
 30/64 seconds + 20/64 seconds + 50/64 seconds => 1.56 seconds

Even if all loops are vectorized you may not get 64x speedup
 since the scalar sections between loops may become significant

Cluster Computers

P0

Memory

Computer1

Program
data

Many computers networked together
Each computer runs the same program but operates on

a different part of the data.
The programmer must distribute the data across the nodes,

divide the workload, and choreograph the communications.
Computers must exchange data to perform most calculations

32 Gbps InfiniBand or 40 Gbps Ethernet, 1.5 µs latencies

P0

Memory

Computer0

Program
data

Network
Switch

Cluster Computers

P0

Memory

Computer1

Example: Vector addition
Computer0 loads X0 and Y0
Computer0 adds X0 + Y0
Computer0 stores into Z0
Computer0 repeats for even elements
At the same time, computer1 follows
the same recipe for all odd elements

P0

Memory

Computer0 Network
Switch

X0 Y0 Z0
X2 Y2 Z2
X4 Y4 Z4
X6 Y6 Z6
… … …

Z0
Z1
Z2
Z3
Z4
Z5
Z6
Z7
…

= +

X0
X1
X2
X3
X4
X5
X6
X7
…

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7
…

X1 Y1 Z1
X3 Y3 Z3
X5 Y5 Z5
X7 Y7 Z7
… … …

Cluster Computers
Example: Matrix multiplication

Could broadcast each X and Y block to all nodes
—> More memory and communication than necessary
The best algorithm is complicated but efficient

 Broadcast diagonal blocks of X down each row
 Multiply X blocks with each node’s Y block
 Shift the Y block to the node above it
 Repeat with the X blocks to the right of diagonal

P0

Network
Switch

Z00 Z01 Z02 Z03
Z10 Z11 Z12 Z13
Z20 Z21 Z22 Z23
Z30 Z31 Z32 Z33

= *

Zij = ∑Xik*Ykj
k=0

3

Computer3

P0
Computer1

P0
Computer2

P0Z00 Z01 X00 X01 Y00 Y01
Z10 Z11 X10 X11 Y10 Y11

Computer0

X00 X01 X02 X03
X10 X11 X12 X13
X20 X21 X22 X23
X30 X31 X32 X33

Y00 Y01 Y02 Y03
Y10 Y11 Y12 Y13
Y20 Y21 Y22 Y23
Y30 Y31 Y32 Y33

Z02 Z03 X02 X03 Y02 Y03
Z12 Z13 X12 X13 Y12 Y13

Z22 Z23 X22 X23 Y22 Y23
Z32 Z33 X32 X33 Y32 Y33

Z20 Z21 X20 X21 Y20 Y21
Z30 Z31 X30 X31 Y30 Y31

Cluster Computers

Network
Switch

P0
Computer0

P0
Computer1

Compiling token_pass.c
beocat> module load iomkl
beocat> mpicc token_pass.c -o token_pass

Run on 2 processes on the head node
beocat> mpirun -np 2 ./token_pass

Communicate between 2 nodes
beocat> sbatch sb.token

1) token = 0
2) Send to proc 1
6) Recv from proc 1

3) Recv from proc 0
4) Increment token = token + 1
5) Send to proc 0

Network Topology

8-port switch

Layered switches for clusters - same bandwidth up as out

8-port switch 8-port switch 8-port switch

8-port switch 8-port switch8-port switch 8-port switch

Distributed-memory supercomputers - Blue Waters 3D Torus

Multicore Computers
16 CoresMany processing cores per computer

One program using many cores.
Each process usually does the same task

on different data.
Can be programmed in MPI where each process

runs its own program and has its own memory.
★Many programs use MPI for historical reasons
★MPI copies data between process’s memory space

Can be programmed in OpenMP where there
is one program that sometimes uses all processes
with all sharing the same memory.
★Easier to program since all data is shared
★Efficient since data is not moved around
★Can only be run on one compute node

Shared Memory
Program

data

P14

P12

P10
P8
P6

P4

P2
P0

P15

P13

P11
P9
P7

P5

P3
P1

Multicore Computers

Shared Memory
Program

data

P14

P12

P10
P8
P6

P4

P2
P0

P15

P13

P11
P9
P7

P5

P3
P1

Compiling vec_add_omp.c
beocat> module load iomkl
beocat> icc vec_add_omp.c -o vec_add_omp -qopenmp
beocat> module load foss
beocat> gcc vec_add_omp.c -o vec_add_omp -fopenmp

Run on 4 cores in 1 compute node
beocat> ./vec_add_omp

//omp_set_num_threads() line and recompile
beocat> ./vec_add_omp
beocat> export OMP_NUM_THREADS=2
beocat> ./vec_add_omp

Multicore Clusters

Shared Memory
Program

data

P14

P12

P10
P8
P6

P4

P2
P0

P15

P13

P11
P9
P7

P5

P3
P1

Shared Memory
data0

P14

P12

P10
P8
P6

P4

P2
P0

P15

P13

P11
P9
P7

P5

P3
P1

Network
Switch

Many multicore computers networked together
Can run MPI between nodes and MPI between cores
★ Easier since hybrid programming is not needed
★ Can be less efficient

Can run MPI between compute nodes and OpenMP within a compute node
★ Most efficient but requires 2 levels of parallel programming

data4

data1

data5

data2

data6

data3

data7

Vector Multicore Computers
Vector computations on each core

Broadwell processors have 256-bit units
vectors of 4 doubles or 8 floats

Intel Phi processors have 512-bit units
vectors of 8 doubles or 16 floats

The vector compiler provides help
Potential 4x, 8x, or 16x speedup!!!

Intel vector compiler is buggy and hard to use
icc -O3 -mavx -qopt-report=5 code.c -o code.x

Requires compiler directives and memory alignment
 x = (double *) _mm_malloc(n * sizeof(double), 64);
 __assume_aligned(x, 64);
 __assume_aligned(y, 64);
 #pragma ivdep
 for(j = 0; j < n; j++) {
 x[j] += y[j] * y[j];
 }

Shared Memory
Program

data

VP14

VP12

VP10
VP8
VP6

VP4

VP2
VP0

VP15

VP13

VP11
VP9
VP7

VP5

VP3
VP1

VP22

VP20

VP18
VP16

VP23

VP21

VP19
VP17

24-core Broadwell
processor

Memory Hierarchy
VP0

RAM Memory
Program

data

Memory closer to the processor is faster
but more expensive, so smaller

Two Haswell E5-2680 processor chips
 —> 2 x 12-core Xeon chips ==> 24 cores
 —> 168 registers per core
 —> 128 KB L1 cache at 700 GB/sec
 —> 1 MB L2 cache at 228 GB/sec
 —> 12 MB L3 cache at 112 GB/sec
 —> 256 MB L4 cache at 42 GB/sec
 —> up to 768 GB RAM at 17 GB/sec
 —> 40 Gbps network or 5 GB/sec

Zi = Xi + Yi leaves data in the caches

Wi = Xi * Yi would start with the data in cache

Network
Switch

VP23

L4 cache

L3 cache

L1 L1
L2

Parallel Computing

The goal of parallel computing is to get an N times speedup on N processes.
Each compute node runs an identical program.
Each node has a process number which is used to divide the work up.
Nodes must exchange data across the network to perform most calculations.

An MPI communication package is used to do communications in a portable manner.
Overview of message passing with MPI: https://computing.llnl.gov/tutorials/mpi/

Programming multicore systems: MPI or OpenMP
Overview of OpenMP: https://computing.llnl.gov/tutorials/openMP/

Communications Between Processes
Communication between compute nodes
★ 30 Gbps InfiniBand with a 1.5 µs latency
★ 40 Gbps Ethernet (RoCE) with a 1.5 µs latency

Communication within a node
★ MPI: 60 Gbps with a 0.4 µs latency
★ OpenMP: Data has shared access
★ MPI-3 also can do shared memory programming

Network topology
★ Clusters have switch hierarchies
★ Cray systems can have 3-dimensional grids
★ Mapping the algorithm to the network topology

 is critical for large supercomputers to keep data
 communications local. This minimizes the
 contention for communication paths.

Accessing the file server
★ 10 Gbps Ethernet for the Elf and Mage nodes
★ 40 Gbps Ethernet for the Hero nodes

Accessing Beocat from the outside world
★ 10 Gbps Ethernet soon to be 100 Gbps Ethernet

Application Scaling
or How many processes should I run on???

Measure the run time of an application on 1, 2, 4, 8, and 16 cores.
★ Time your run using the ‘real’ part of the time function
★ time ./your_executable

real 0m7.261s
user 0m0.000s
sys 0m0.010s

Calculate the speedup compared to the single core run.

Not much speedup when you double the cores from 8 to 16.
The scaling will change with the size of system you are using.
Also check the memory utilization.

Run Time Speed up Memory
Utilization1 core 10 hours 10 GB

2 cores 5 hours 2.0x 12 GB
4 cores 2.8 hours 3.6x 14 GB
8 cores 1.5 hours 6.7x 14 GB

16 cores 1.1 hours 9.1x 14 GB

Application Scaling
or How many compute nodes should I run on???

Measure the run time of an application on 1, 2, and 4 compute nodes.
Calculate the speedup compared to the single compute node run.

Scaling to multiple nodes will be difficult on Beocat
★ Lots of powerful cores on each node can overwhelm the network
★ Getting a multi-node job through the queue can be slow

Spreading the memory across compute nodes may be necessary.

Job Interactions

Jobs can interact with other jobs running on the same compute node.
★You own the processor cores you are allocated, so other jobs can’t use them.
- If another job exceeds its memory allocation it can affect yours.
- All jobs on a compute node share the memory bandwidth.
- All jobs on a compute node share the network connection.

—> Multiple jobs doing heavy IO to the file server could slow each other down.

You can check to see if your jobs interact with themselves.
★Run an 8 core job alone on one compute node (request all cores but run on 8)
★Run two 8-core jobs on the same machine at the same time

You must submit both jobs to a given node that you know is open.
★Does it take longer to run two 8-core jobs than one 8-core job???

Application Profiling
You can also add profiling to a code to measure the performance of each function.
An application programmer would do this at the start of optimizing an application.

Selene m time.abyss
 time in seconds +children calls name
 409.606 (19.9%) 416.676 362833951 NSC handle
 391.084 (19.0%) 783.976 1 cntlCoverage
 314.702 (15.3%) 2043.067 1 runControl
 221.231 (10.8%) 221.231 84895836 rcvBufMsg
 210.667 (10.2%) 403.334 1 GenerateAdjacency
 195.801 (9.5%) 195.801 826749932 checkMessage
 111.441 (5.4%) 945.150 741854096 NSC pumpNetwork
 60.177 (2.9%) 594.387 2 NetworkAssembly
 47.114 (2.3%) 58.690 298011483 procBranchAssembly
 15.529 (0.8%) 69.064 15 removeMarked
 12.860 (0.6%) 25.644 3786906 assembleContig
 12.291 (0.6%) 12.291 2 mergeFAfiles
 8.769 (0.4%) 9.088 31339019 erode
 7.579 (0.4%) 7.579 1 NetworkPopBubbles
 6.263 (0.3%) 11.416 15 NetworkTrim
 5.653 (0.3%) 34.667 1 NetworkDiscoverBubbl
 5.215 (0.3%) 5.215 2290507 markNeighbors
 4.667 (0.2%) 267.039 3 LoadSequences
 4.275 (0.2%) 9.507 1 splitAmbiguous
 4.220 (0.2%) 23.373 2 markAmbiguous
 3.513 (0.2%) 30.684 2 Erode
 1.886 (0.1%) 2057.281 1 Abyss Total
 1.022 (0.0%) 3.970 2 NSC cntlErode
 0.946 (0.0%) 75.370 15 NSC rmMarked
 0.291 (0.0%) 0.434 2 completeOperation
 0.215 (0.0%) 0.215 525381 NSC branchTrim
 0.144 (0.0%) 87.814 15 NSC ctrlTrimRound
 0.080 (0.0%) 0.080 1 openBubbleFile
 0.036 (0.0%) 0.036 1 SeqColHash
 0.001 (0.0%) 0.001 943 NSC parseControlMsg
 0.000 (0.0%) 87.815 2 NSC ctrlTrim
 0.000 (0.0%) 0.000 4 cleanup

 Total time is 2057.280645 secs (0 hours 34 mins 17.281 secs) on hero08
 Timer overhead ~ 0.100000 usecs no cutoff for now

#include “mytimer_c.h”

Timer_Start(“section_name”);
 section to be timed
Timer_Stop();
 …
Timer_Report(“time.out”);

Additional Information

Oklahoma University - Supercomputing in Plain English
http://www.oscer.ou.edu/education.php

message passing with MPI: https://computing.llnl.gov/tutorials/mpi/

Overview of OpenMP: https://computing.llnl.gov/tutorials/openMP/

https://computing.llnl.gov/tutorials/mpi/

