
Advanced HPC Usage
Interactive Jobs from the Command Line

Running Array Jobs with Slurm

Advanced Slurm Job Debugging

Advanced kstat Usage

Advanced File Access

File Sharing using ACLs

HPC Python Virtual Environments

Migrating Jupyter Notebooks to Slurm Python Scripts

Interactive Jobs using Slurm

Interactive jobs from the command line

 Users often run interactive jobs from the OnDemand interface.
 You can also request an interactive session from the command line.

 ssh into the head node and issue an srun command as below:

srun -J myjobname -N 1 -n 16 -t 24:00:00 --mem=30G -C moles -p ksu-cis-hpc.q --pty bash

 The srun command submits the interactive request to Slurm.
 This request sets the job name to myjobname, requests 1 node with 16 cores and 30 GB
 for 24 hours with the constraint of the moles only and the priority of the ksu-cis-hpc group.
 The last part chooses the bash shell.

 Once you submit this request, you may need to wait a while until it is allocated.
 Then you will drop into the node requested and be in an interactive shell.

 This can be very useful for debugging codes that need more resources than is
 available on the head nodes.

Array Jobs in Slurm
Running multiple similar jobs from one job script

 Some users submit hundreds or thousands of similar jobs using scripts.
 This clogs the Slurm queue making it difficult to see what jobs other users have queued.
 Slurm can only look a certain depth into the queue, so higher priority jobs or jobs needing
 less resources that could run immediately will not because they are buried too deep.

 Array jobs use a single job script to submit many similar jobs.
 This is easier for the user to control as scancel would just require a single job ID.
 Having a single job script means no clogging the Slurm queue.
 Best yet, it does not change the scheduling priority of your jobs compared to individual scripts.

Constructing an array job script

 #SBATCH --array=1-5:2
 $SLURM_ARRAY_TASK_ID

 While you submit a single job script, Slurm will treat it like multiple job submissions with
 the $SLURM_ARRAY_TASK_ID set differently in each run.
 The example above is for a range from 1 to 5 with an optional step 2, so there would be
 3 jobs with $SLURM_ARRAY_TASK_ID set to 1, 3, and 5.

 It is up to the user to determine how to use the $SLURM_ARRAY_TASK_ID variable.
 It can be an input to the application or used to choose a different input file for example.

 If you need help writing an array job script, please contact the administrators.

Advanced Slurm Job Debugging
kstat -l provides advanced hardware and performance information

 /tmp memory size, communication network rate and type, and GPU type and memory
 the GPU type is the string to use when requesting a specific GPU like —gres=gpu:rtx_a4000:1
 The current and maximum memory used for each job.
 The CPU utilizations for each job include user, system, idle, and IO wait percentages
 these are summed across cores and updated each minute, but otherwise what htop would show on the node
 The GPU utilization and memory for each job.

You can also ssh into any node you have a job running on

 htop then choose your user name to isolate your job’s processes
 This will give you thread usage and memory info updated every second.
 nvidia-smi
 This will provide a snapshot of GPU utilization and GPU memory usage

Google any error messages

 If you get an error message, Google the app name and the error message
 this is usually what we do first when you contact us
 If you still need help provide us lots of information
 The path to your job, the job ID, the job script name, the exact error message, your KSU eID or WSU_ID

Advanced kstat Usage
Use kstat to print a table of CPU or GPU utilization and memory

kstat --table-cpu-60min 20826470

 CPU and Memory Usage for job 20826470 every 60 minutes
 Minutes User System Idle IO Wait Memory Disk Swap
 0 97.7% 0.1% 2.2% 0.0% 1.498 gb 0.000 gb
 60 99.3% 0.1% 0.6% 0.0% 1.547 gb 0.000 gb
 120 99.2% 0.1% 0.8% 0.0% 1.549 gb 0.000 gb
 180 98.5% 0.1% 1.5% 0.0% 1.550 gb 0.000 gb
 240 97.4% 0.1% 2.5% 0.0% 1.477 gb 0.000 gb
 300 99.0% 0.1% 0.9% 0.0% 1.533 gb 0.000 gb

kstat --table-gpu-60min 20826470

 GPU usage and memory for job 20826470 every 60 minutes
 Minutes Usage Memory
 0 2.0% 192.867 mb
 60 2.0% 193.000 mb
 120 2.0% 193.000 mb
 180 2.0% 193.000 mb
 240 2.0% 193.000 mb
 300 2.0% 193.000 mb

kstat graphs

Use kstat to graph CPU or GPU usage or memory

For graphs you must enable X11 forwarding and have some software that
can graph on your local system. My Apple laptop uses XQuartz to graph.

ssh -X your_wsu_id@hpc-login.wichita.edu
or

have ForwardX11 yes in your .ssh/config file for your BeoShock connection

You can just NOT enable X11 forwarding and transfer the resulting graph
which gets stored as .kstat.gnuplot.png on your home directory to your local
system and view it there.

mailto:your_wsu_id@hpc-login.wichita.edu

kstat GPU usage graph
kstat —graph-gpu-usage 20764439

kstat GPU usage graph
kstat —graph-cpu-memory 20764439

kstat totals for the entire cluster
Use kstat to print a table of CPU usage and memory for the entire cluster

kstat --table-node all

 This cluster has 21 nodes 768 cores 8 GPUs and 7.064 TB memory

 Usage and Memory for all nodes for 365 days
 Day Cores Load Used Alloc Total Memory
 0 186 52.8 694 2363 7233 GB
 1 314 136.8 799 2711 7233 GB
 2 308 113.1 815 2873 7233 GB
 3 369 232.2 1026 2826 7233 GB
 4 380 237.8 853 2400 7233 GB
 5 365 250.3 438 1912 7233 GB
 6 474 381.2 538 1973 7233 GB
 7 519 386.7 755 2192 7233 GB
 8 571 444.5 914 2985 7233 GB
 9 517 419.6 820 1869 7233 GB
 10 406 329.7 743 1702 7233 GB

kstat --table-node gpu202401 look at a single node

Advanced File Access
Home directories

 On Beocat each user has 1 TeraByte (1000 GigaBytes) of space on their /homes directory.
 If you exceed that your /homes directory will not be backed up.
 If you exceed 2 TeraBytes, you will not be able to run on Beocat until you delete files.

 On BeoShock, if you are going to use more than a few TeraBytes please contact the
 HPC Directory Terrance Figy for approval as resources are limited.

Bulk directories

 If you need more storage space on Beocat please contact the administrators.
 You can rent /bulk storage space at $45/TB/year billed monthly.

Scratch space

 Beocat has 270 TeraBytes of short term storage space that is purged monthly.
 Create your own directory on /fastscratch
 Keep in mind that this is a shared resource and may fill up.

 This is a ZFS file system which is different from the CEPH parallel file servers that
 supports the /homes and /bulk directories. It does not suffer performance issues
 from opening multiple file for writing on the same directory that CEPH can.

File Sharing using ACLs
Sharing files using the setacls script

 All home directories must be read and write locked so other users cannot access them.
 You may share subdirectories with groups or users but need to use Access Control Lists (ACLs).

setacls -h this will provide usage information for the command

 setacls [-r] [-w] [-g group] [-u user] -d /full/path/to/directory
 Execute pemission will always be applied, you may also choose r or w
 Must specify at least one group or user
 Must specify at least one directory or file, and it must be the full path

setacls -r -g ksu-cis-hpc -u mozes -d /homes/daveturner/shared_dir

 The above example would provide read access to the priority group ksu-cis-hpc plus the
 user mozes to the shared_dir subdirectory on /homes/daveturner.

 Priority groups are the same as used to gain access to compute nodes owned by a group.
 If you are sharing with only a few individuals, specify each user instead.

 As the setacls script runs, it will print the full set of setfacl commands that you would otherwise
 have needed to use instead.

getfacl /homes/daveturner/shared_dir

 Once you have shared a subdirectory, you can check the sharing with the getfacl command.

HPC Python Virtual Environments
It is very useful to have different Python versions and libraries installed for
each project you work on to ensure that all software matches the needs of
each scientific application. Virtual environments are the way to accomplish this.

Beocat https://support.beocat.ksu.edu/Docs/Installed_software#Python
BeoShock https://docs.hpc.wichita.edu/index.php?title=Installed_software#Python

Load the version of Python you want
module avail |& grep -i python
module load Python/3.11.5-GCCcore-13.2.0

Create the virtualenv directory and cd to it
mkdir -p ~/virtualenv
cd ~/virtualenv

Create the virtual environment for this project
python -m -venv —system-site-packages py_env_3.11.5

Activate the virtual environment
source ~/virtualenv/py_env_3.11.5/bin/activate

Install any packages you need into that specific environment
pip install numpy scipy

You can now use this environment and installed packages anytime by activating it.
!Precede everything with an exclamation point if doing this in a Jupyter notebook.

https://support.beocat.ksu.edu/Docs/Installed_software#Python
https://docs.hpc.wichita.edu/index.php?title=Installed_software#Python

Migrating Jupyter Notebooks to Slurm

Beocat https://support.beocat.ksu.edu/Docs/Installed_software#Jupyter
BeoShock

Jupyter Notebooks in OnDemand are great for developing Python code.
You can interactively add code and immediately test with just a mouse click.

They are not great for doing production runs once the code is completed.
In OnDemand you request a certain runtime, and the Jupyter Notebook
locks the resources up for this entire time even if the code has finished.
This wastes resources for the cluster, while a Slurm job completes and
releases the resources when the code completes.

Convert Jupyter Notebook code.ipynb to Python code.py

From the OnDemand Jupyter File menu choose Download as and Python (.py)

If you already have a file like code.ipynb on Beocat or BeoShock use:
 module load JupyterLab
 jupyter nbconvert code.ipynb --to script

